Class PromptLayerOpenAI

PromptLayer wrapper to OpenAI

Hierarchy

Constructors

Properties

CallOptions: OpenAICallOptions
ParsedCallOptions: Omit<OpenAICallOptions, never>
batchSize: number = 20

Batch size to use when passing multiple documents to generate

caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

frequencyPenalty: number = 0

Penalizes repeated tokens according to frequency

lc_kwargs: SerializedFields
lc_namespace: string[] = ...

A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

lc_serializable: boolean = false
maxTokens: number = 256

Maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the model's maximum context size.

modelName: string = "text-davinci-003"

Model name to use

n: number = 1

Number of completions to generate for each prompt

presencePenalty: number = 0

Penalizes repeated tokens

streaming: boolean = false

Whether to stream the results or not. Enabling disables tokenUsage reporting

temperature: number = 0.7

Sampling temperature to use

topP: number = 1

Total probability mass of tokens to consider at each step

verbose: boolean

Whether to print out response text.

azureOpenAIApiDeploymentName?: string

Azure OpenAI API deployment name to use for completions when making requests to Azure OpenAI. This is the name of the deployment you created in the Azure portal. e.g. "my-openai-deployment" this will be used in the endpoint URL: https://{InstanceName}.openai.azure.com/openai/deployments/my-openai-deployment/

azureOpenAIApiInstanceName?: string

Azure OpenAI API instance name to use when making requests to Azure OpenAI. this is the name of the instance you created in the Azure portal. e.g. "my-openai-instance" this will be used in the endpoint URL: https://my-openai-instance.openai.azure.com/openai/deployments/{DeploymentName}/

azureOpenAIApiKey?: string

API key to use when making requests to Azure OpenAI.

azureOpenAIApiVersion?: string

API version to use when making requests to Azure OpenAI.

azureOpenAIBasePath?: string

Custom endpoint for Azure OpenAI API. This is useful in case you have a deployment in another region. e.g. setting this value to "https://westeurope.api.cognitive.microsoft.com/openai/deployments" will be result in the endpoint URL: https://westeurope.api.cognitive.microsoft.com/openai/deployments/{DeploymentName}/

bestOf?: number

Generates bestOf completions server side and returns the "best"

callbacks?: Callbacks
logitBias?: Record<string, number>

Dictionary used to adjust the probability of specific tokens being generated

metadata?: Record<string, unknown>
modelKwargs?: Record<string, any>

Holds any additional parameters that are valid to pass to openai.createCompletion that are not explicitly specified on this class.

openAIApiKey?: string

API key to use when making requests to OpenAI. Defaults to the value of OPENAI_API_KEY environment variable.

organization?: string
plTags?: string[]
promptLayerApiKey?: string
returnPromptLayerId?: boolean
stop?: string[]

List of stop words to use when generating

tags?: string[]
timeout?: number

Timeout to use when making requests to OpenAI.

user?: string

Unique string identifier representing your end-user, which can help OpenAI to monitor and detect abuse.

lc_runnable: boolean = true

Accessors

  • get callKeys(): string[]
  • Keys that the language model accepts as call options.

    Returns string[]

  • get lc_aliases(): Record<string, string>
  • A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

    Returns Record<string, string>

  • get lc_attributes(): undefined | {
        [key: string]: undefined;
    }
  • A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

    Returns undefined | {
        [key: string]: undefined;
    }

  • get lc_secrets(): undefined | {
        [key: string]: string;
    }
  • A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

    Returns undefined | {
        [key: string]: string;
    }

Methods

  • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

    Type Parameters

    Parameters

    • func: ((inputs, options?, runManagers?, batchOptions?) => Promise<(string | Error)[]>)

      The function to be executed for each input value.

    • inputs: T[]
    • Optional options: Partial<OpenAICallOptions & {
          runType?: string;
      }> | Partial<OpenAICallOptions & {
          runType?: string;
      }>[]
    • Optional batchOptions: RunnableBatchOptions

    Returns Promise<(string | Error)[]>

    A promise that resolves to the output values.

  • Call out to OpenAI's endpoint with k unique prompts

    Parameters

    • prompts: string[]

      The prompts to pass into the model.

    • options: Omit<OpenAICallOptions, never>

      Optional list of stop words to use when generating.

    • Optional runManager: CallbackManagerForLLMRun

      Optional callback manager to use when generating.

    Returns Promise<LLMResult>

    The full LLM output.

    Example

    import { OpenAI } from "langchain/llms/openai";
    const openai = new OpenAI();
    const response = await openai.generate(["Tell me a joke."]);
  • Calls the OpenAI API with retry logic in case of failures.

    Parameters

    • request: CompletionCreateParamsStreaming

      The request to send to the OpenAI API.

    • Optional options: OpenAICoreRequestOptions

      Optional configuration for the API call.

    Returns Promise<AsyncIterable<Completion>>

    The response from the OpenAI API.

  • Parameters

    • request: CompletionCreateParamsNonStreaming
    • Optional options: OpenAICoreRequestOptions

    Returns Promise<Completion>

  • Get the identifying parameters for the model

    Returns Omit<CompletionCreateParams, "prompt"> & {
        model_name: string;
    } & ClientOptions

  • This method takes an input and options, and returns a string. It converts the input to a prompt value and generates a result based on the prompt.

    Parameters

    Returns Promise<string>

    A string result based on the prompt.

  • This method is similar to call, but it's used for making predictions based on the input text.

    Parameters

    • text: string

      Input text for the prediction.

    • Optional options: string[] | OpenAICallOptions

      Options for the LLM call.

    • Optional callbacks: Callbacks

      Callbacks for the LLM call.

    Returns Promise<string>

    A prediction based on the input text.

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<string, any, unknown>

  • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

    Implemented as a static method to support loading logic.

    Returns string

  • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

    Type Parameters

    Parameters

    • inputGenerator: AsyncGenerator<I, any, unknown>
    • transformer: ((generator, runManager?, options?) => AsyncGenerator<O, any, unknown>)
        • (generator, runManager?, options?): AsyncGenerator<O, any, unknown>
        • Parameters

          Returns AsyncGenerator<O, any, unknown>

    • Optional options: OpenAICallOptions & {
          runType?: string;
      }

    Returns AsyncGenerator<O, any, unknown>

Generated using TypeDoc